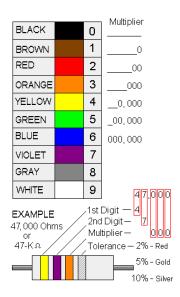

Resistors

We begin by learning how to read the values of resistors and to measure the values using a digital multimeter (DMM). Resistors are the most common and simplest electrical component. In an electrical circuit diagram, they are indicated using a zig-zag line.



This is only the symbol we use and not what they look like. Resistors come in many forms, but usually look like small pills with colored stripes with a wire coming out of each end.

The colored stripes tell us what the value is of the resistor. Only the first three stripes are used for this purpose. The first two stripes are read like a regular number with each color representing a specific digit.

For the resistor shown above, the first two stripes are orange, which, from the chart at the left, both represent the number 3. Thus the first two numbers are 33. The third stripe is white, which represents the number of zeros we add to the right of 33. Thus, the resistor is 3300000000 Ω which is really, really huge. We will not use resistors this large. We will use a 1000 Ω resistor. This is also called a 1k Ω resistor, since the symbol k represents 1000. The stripes in this case are brown, black, red.

Note that the colors used for the numbers from 2 to 7 correspond to the colors of the rainbow, also known as the colors of visible light. There are many helpful tools online for identifying resistors including: <u>http://www.dannyg.com/javascript/res/resload.htm</u>, <u>http://www.csgnetwork.com/resistcolcalc.html</u>, and <u>http://www.ealnet.com/m-eal/resistor/resistor.htm</u>.

It is good to use one of these tools to confirm that you have read the value of resistors correctly. However, it is still possible to read the colors wrong since some colors fade or print badly when the resistors are being manufactured. To be completely sure that you know the values of the resistors we are going to use today, it is best to measure each one directly to confirm its value. The device we use for this purpose is called a Digital Multi-meter or DMM for short. There are two DMMs located near where each three pairs of students are seated. To use the DMM, we need

- i. One coaxial cable (in the large plastic box at each station)
- ii. One banana plug to BNC adaptor (in the small plastic box)
- iii. One BNC to mini-grabber adaptor (in the small plastic box)

Insert the two banana plugs into the upper right connection points on the DMM (red oval) making sure that the ground bump goes in the bottom hole. Connect the coax cable to this adaptor and then the minigrabber adaptor to the other end of the cable. Turn on the DMM. Push the resistance button (blue oval) marked with an Ω symbol. Connect the two minigrabber connectors together and you should read a very small value on the meter. This is the resistance of the coax cable. Measure each of the resistors and list the values you obtain in the table on the next page.

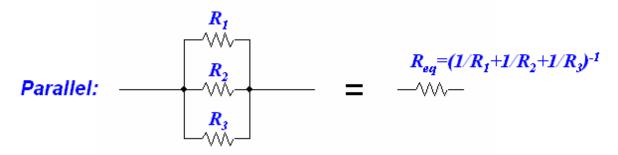
Resistance Measurements (Measure all of your resistors, since even those that are labeled the same can be at least a little different)

1 st Band Color	2 nd Band Color	3 rd Band Color	Value from Bands	Measured Value

Combining Resistors

Resistors resist the flow of electrical current in the same way that friction resists the motion of physical objects. If, for example, you slide your hand back and forth across the surface of a table (while pushing down on the table top) you will feel friction that forces you to work hard to move your hand. You will also notice that your hand will become warm and your mechanical motion is converted into heat by the friction. If you do not rub on anything, you can much more easily move your hand back and forth (try this without touching the table) and your hand will not heat up. When electrical current flows through a resistor, heat is also produces, although you will generally not notice that the resistor becomes warm since the currents we use are small. However, you should have noticed many times that electrical devices you use become warm when they are on. This is due to resistance in the circuits inside the device.

Give one or two examples of electrical devices that you have personally noticed getting warm when they are turned on.


1.

2.

Since one resistor resists current flow, making the current pass through two resistors connected end-to-end (we call this configuration resistors connected in series) should double the resistance, which is indeed the case. We indicate resistors in series as shown below.

Series:
$$\underline{R_1}$$
 $\underline{R_2}$ $\underline{R_3}$ $\underline{R_{eq}} = R_1 + R_2 + R_3$

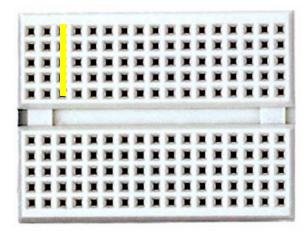
The formula at the right says that resistors add directly in series. Thus, if you have 3 1000Ω resistors (also known as $1k\Omega$), they will add to 3000Ω . We will do a simple experiment in a minute to show that this is indeed the case. Resistors can also be combined in parallel. That is connecting them together so that the electrical current is given multiple paths to follow rather than just one. When this happens, the current will split up into the parallel resistors.

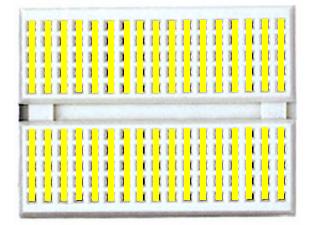
Adding resistors in series and parallel follows very simple rules that should make sense to us. Resistors in series just add to make a larger resistance. $R = R_1 + R_2 + R_3 + ...$ while resistors in

parallel add to make a smaller resistance. $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$ This is similar to waiting in

line at the grocery store. If there are 16 people waiting in line for one cashier, it takes a long time to get served. If there are 4 cashiers, there will be only 4 people per line and the wait will be much less.

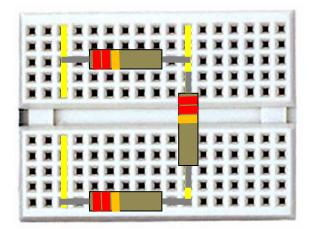
Calculate the resistance of 4 1000Ω resistors in series.


$$R = R_1 + R_2 + R_3 + \dots = 1000 + 1000 + 1000 + 1000 = ?$$

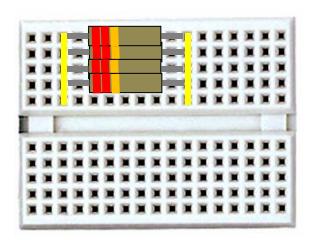

Calculate the resistance of 4 4000 Ω resistors in parallel.

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots = \frac{1}{4000} + \frac{1}{4000} + \frac{1}{4000} + \frac{1}{4000} = ?$$

or $R = ?$


Measuring Combined Resistances

To measure combinations of resistors, we need a simple method to connect them together. For this purpose and for other circuits we will build today, we will use a protoboard (also known as a breadboard). The device we will use looks something like the one shown below.



This is a very handy device that permits us to connect electrical components (such as resistors) by pushing wires into the holes on the board. When a wire is pushed into one of the holes on the board, it will be connected to 4 other holes. For example, in the board shown above left, the 5 holes marked with the yellow line are connected together. The board shown above right shows all sets of connected holes (there are 34 sets on this board ... the board you use may be different). Note that these yellow lines are not found on the actual board. To connect three resistors in series, one uses a configuration like the one shown below.

The 1st resistor is inserted in 2 different columns of 5 holes. The 1st wire of the 2nd resistor is connected to the 2nd set of 5 holes used by the 1st resistor. The 2nd wire of the 2nd resistor is inserted into a new set of 5 holes elsewhere on the board. The 3rd resistor is connected in the same manner. If done correctly, the 3 resistors should now be in series. Following this method, connect 4 1k Ω resistors in series and then use the DMM to measure the total resistance. Your result should agree with your calculation. Now combine 4 $4k\Omega$ resistors in parallel. This is easier than series because one end of each resistor goes in one set of 5 holes and the other goes in the other set.

Measure the combined resistance with the DMM. Again, your result should agree with your calculation.

For your measurements of individual resistors and also of combinations of resistors, you will not obtain perfect agreement with your calculations or with the stripes shown on the resistors. This is because resistor manufacturers only promise to provide components that are close to the indicated value. We do not need resistors to be perfect to build circuits and perfect precision in labeling is expensive. The 4th stripe on each resistor shows how close the manufacturer promises to provide the resistors we have requested. The most common 4th stripe is silver, which indicates 10% tolerance. That is, a resistor with brown, black, orange stripes should be 10,000 Ω but with a sliver stripe, it might be as low as 9,000 Ω or as high as 11,000 Ω . The codes for the 4th band are: **silver** ±10%, **gold** ±5%, **red** ±2%, **brown** ±1%. If no 4th band is shown the tolerance is ±20%.